

KID Summer School Nice, 2015

Davide Consoli

Green Skills

Plan of the talk

1. Environment, Knowledge and Innovation

Plan of the talk

1. Environment, Knowledge and Innovation
2. Empirical identification of Green Skills

Plan of the talk

1. Environment, Knowledge and Innovation
2. Empirical identification of Green Skills
3. The effect of Environmental Regulation (ER) on the demand for Green Skills

Plan of the talk

1. Environment, Knowledge and Innovation
2. Empirical identification of Green Skills
3. The effect of Environmental Regulation (ER) on the demand for Green Skills

Drawing on joint work with F. Vona, G. Marin, A. Marzucchi, D. Popp
ofe
ivir $=5$

PART 1

Background

Why Green?

Climate Change

- Damages eco-system
- Threatens economic development
- Increases inequality
- Undermines Social cohesion

Why Green?

Climate Change

- Damages eco-system
- Threatens economic development
- Increases inequality
- Undermines Social cohesion
"(...) we only have three options: mitigation, adaptation, and suffering. It's really that simple" J. Holdren (Top Science Advisor US President, 2010)

Why Green?

Environmental innovation (EI)

"Production, assimilation or exploitation of a product, production process, service or management or business methods that results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use compared to relevant alternatives"
(MEI Report, 2008)

Why Green?

Environmental innovation (EI)

"Production, assimilation or exploitation of a product, production process, service or management or business methods that results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use compared to relevant alternatives"
(MEI Report, 2008)

Why Green?

Environmental innovation (EI)

"Production, assimilation or exploitation of a product, production process, service or management or business methods that results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use compared to relevant alternatives"
(MEI Report, 2008)

Why Green?

Environmental innovation (EI)

"Production, assimilation or exploitation of a product, production process, service or management or business methods that results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use compared to relevant alternatives"
(MEI Report, 2008)

Why Green?

Environmental innovation (EI)

"Production, assimilation or exploitation of a product, production process, service or management or business methods that results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use compared to relevant alternatives"
(MEI Report, 2008)

Why Green?

Determinants of El (Environmental Economics):

1. Regulation and policy;
2. Supply side (Cost savings, productivity gains, R\&D);
3. Demand side (consumer pressure, new market niches)

Why Green?

Determinants of El (Environmental Economics):

1. Regulation and policy;
2. Supply side (Cost savings, productivity gains, R\&D);
3. Demand side (consumer pressure, new market niches)

Role of industry-specific factors (Innovation studies):

1. Knowledge base;
2. Technological opportunities;
3. Appropriability conditions;
4. Barriers

Why Green?

Transition towards low-carbon economy

Why Green?

Transition towards low-carbon economy

- Long-term, incremental

Why Green?

Transition towards low-carbon economy

- Long-term, incremental
- Widely spread over sectors, regions

Why Green?

Transition towards low-carbon economy

- Long-term, incremental
- Widely spread over sectors, regions
- Challenge existing know-how
- Skill mismatches
- Skill shortages

Why Green?

Transition towards low-carbon economy

- Long-term, incremental
- Widely spread over sectors, regions
- Challenge existing know-how
- Skill mismatches
- Skill shortages
- Recent policy talk: "decent jobs"

Why Green?

Transition towards low-carbon economy

- Long-term, incremental
- Widely spread over sectors, regions
- Challenge existing know-how
- Skill mismatches
- Skill shortages
- Recent policy talk: "decent jobs"
- Gap in Env Econ \& Innov Econ

Why Skills?

Autor, Levy and Murnane (2003)
What is the effect of technology on the composition of employment?

Why Skills?

Autor, Levy and Murnane (2003)
What is the effect of technology on the composition of employment?
Taxonomy: the task content of occupations

- Occupation: bundle of tasks
- Task: unit of work activity to produce output
- Skill: stock of abilities for performing tasks
(Goos \& Manning, 2007; Michaels et al, 2014; Goos et al, 2014)

US Employment polarization

Example: ICTs in the 1990s

Routine tasks
Analytic and interactive tasks

Examples

Computer impact

Manual tasks

Examples

Computer impact

Example: ICTs in the 1990s

	Routine tasks	Nonroutine tasks
	Analytic and interactive tasks	
Examples	- Record-keeping - Calculation - Repetitive customer service (e.g., bank teller)	

Computer impact

Manual tasks

Examples

- Picking or sorting
- Repetitive assembly

Computer impact

Example: ICTs in the 1990s

Nonroutine tasks
Analytic and interactive tasks

Examples

- Record-keeping
- Calculation
- Repetitive customer service (e.g., bank teller)
- Forming/testing hypotheses
- Medical diagnosis
- Legal writing
- Persuading/selling
- Managing others

Computer impact

Manual tasks

Examples

- Picking or sorting
- Repetitive assembly
- Janitorial services
- Truck driving

Computer impact

Example: ICTs in the 1990s

	Routine tasks	Nonroutine tasks
	Analytic and	interactive tasks
Examples	- Record-keeping - Calculation - Repetitive customer servic (e.g., bank teller)	- Forming/testing hypotheses - Medical diagnosis - Legal writing - Persuading/selling - Managing others
Computer impact	- Substantial substitution Man	- Strong complementarities ual tasks
Examples	- Picking or sorting - Repetitive assembly	- Janitorial services - Truck driving
Computer impact	- Substantial substitution	- Limited opportunities for substitution or complementarity

Example: ICTs in the 1990s

	Routine tasks	Nonroutine tasks
	Analytic and in	teractive tasks
Examples	- Record-keeping - Calculation - Repetitive customer service (e.g., bank teller)	- Forming/testing hypotheses - Medical diagnosis - Legal writing - Persuading/selling - Managing others
Computer impact	- Substantial substitution Manua	- Strong complementarities tasks
Examples	- Picking or sorting - Repetitive assembly	- Janitorial services - Truck driving
Computer impact	- Substantial substitution	- Limited opportunities for substitution or complementarity

In a nutshell ...

YOU'D STILL HAVE TO READ THE BOOK AND TELL THE COMPUTER WHAT YOU WANT TO SAY, YOU KNOW.

US Employment polarization

US Employment polarization

EU Employment polarization

(\downarrow しOZ) Бu!uupw pud suomolos ‘soos

Summing up (1)

Task-based model opens up the 'black box' of human capital: relation between technology and work activities

Summing up (1)

Task-based model opens up the 'black box' of human capital: relation between technology and work activities
Structural change:

- Obsolete occupations disappear
- New occupations emerge
- Continuing occupations change (e.g. their task content evolves)

A note of caution

If the 'technological transition' story works for GPTs (steam engine, electricity and ICTs) why not El?

A note of caution

If the 'technological transition' story works for GPTs (steam engine, electricity and ICTS) why not EI?

Classic GPTs

1. Single body of physical technology
2. Widely applicable across sectors with minor adaptations
3. Amenable to many different contexts of use

Green Technologies

1. Sector-specific, particular problems
2. Pollution-intensive industries mostly in manufacturing and utilities
3. Mono-purpose: low transfer of technology and know-how across sectors

Summing up (2)

1. Climate Change

2. Environmental innovation
3. Employment
> Gap in innovation studies
> Task Approach

- Occupations
- Skills

Summing up (2)

1. Climate Change
2. Environmental innovation
3. Employment
> Gap in innovation studies
> Task Approach

- Occupations
- Skills

Summing up (2)

1. Climate Change
2. Environmental innovation
3. Employment
> Gap in innovation studies
> Task Approach

- Occupations
- Skills

Summing up (2)

1. Climate Change
2. Environmental innovation
3. Employment
> Gap in innovation studies
> Task Approach

- Occupations
- Skills

Summing up (2)

1. Climate Change
2. Environmental innovation
3. Employment
> Gap in innovation studies
> Task Approach

- Occupations
- Skills

PART 2

Empirical identification of green skills

Green job accounting: ambiguities

Grey literature: ILO, UNEP, CEDEFOP, OECD

1. "Green Skills" conflated with "Green Jobs"
>> Occupations easier as unit, skills as
"bundles"

Green job accounting: ambiguities

Grey literature: ILO, UNEP, CEDEFOP, OECD

1. "Green Skills" conflated with "Green Jobs"
>> Occupations easier as unit, skills as
"bundles"
2. Assumption: skills of green job radically new, unrelated to those of non-green jobs
>> Sharp (i.e. binary) distinction between green and non-green sectors, green and non-green jobs?

Green job accounting 1: EGS

Eurostat and US Bureau of Labor Statistics:
"Environmental Goods and Services (EGS) are produced for the purpose of preventing, reducing and eliminating pollution and any other degradation of the environment, and for preserving and maintaining natural resources"

Green job accounting 1: EGS

Eurostat and US Bureau of Labor Statistics:
"Environmental Goods and Services (EGS) are produced for the purpose of preventing, reducing and eliminating pollution and any other degradation of the environment, and for preserving and maintaining natural resources"

Workforce of EGS sectors >> Green Jobs

Green job accounting 1: EGS

Eurostat and US Bureau of Labor Statistics:
"Environmental Goods and Services (EGS) are produced for the purpose of preventing, reducing and eliminating pollution and any other degradation of the environment, and for preserving and maintaining natural resources"

Workforce of EGS sectors >> Green Jobs
Danger: false positives
e.g. Metal workers

Green job accounting 1: EGS

Eurostat and US Bureau of Labor Statistics:
"Environmental Goods and Services (EGS) are produced for the purpose of preventing, reducing and eliminating pollution and any other degradation of the environment, and for preserving and maintaining natural resources"

Workforce of EGS sectors >> Green Jobs
Danger: false positives \& false negatives
e.g. Energy conservation activities within firms

Green job accounting 2: ONET

BLS Green Economy initiative

Based on O*NET: db of occupation-specific information covering various dimensions e.g. educational level, work tasks, job experience requirements, et cetera

Green job accounting 2: ONET

BLS Green Economy initiative

Based on O*NET: db of occupation-specific information covering various dimensions e.g. educational level, work tasks, job experience requirements, et cetera

- Occupations (not sector) unit of analysis
- Green jobs: include a series of specific green tasks
- Validated: questionnaires, literature, fieldwork

Dierdorff et al (2009) Greening of the World of Work: Implications for O*NET-SOC and New and Emerging Occupations

Green job accounting 2: ONET

Green Enhanced Skills: Existing occupations expected to undergo changes in terms of task content
I.e. Civil Engineers, Financial Analysts, Metal workers

Green Emerging: New occupations emerging as response to specific "green needs"
I.e. Wind Turbine Operator, Regulation Specialist

Green job accounting 2: ONET

Green Enhanced Skills: Existing occupations expected to undergo changes in terms of task content
I.e. Civil Engineers, Financial Analysts, Metal workers

Green Emerging: New occupations emerging as response to specific "green needs"
I.e. Wind Turbine Operator, Regulation Specialist

Green Employment, US 2008-2012

Non Green Existing Green New Green

88.9%
9.7%
1.4%

- Non-green Existing Green New Green

- Non-green Existing Green New Green

Green jobs vs non-green jobs

Matching-like method to compare green and similar non-green occupations
E.g. "Environmental engineers" vs other engineers

$$
H C_{i}=\beta^{1} G r E_{i}^{0,1}+\beta^{2} G r N_{i}^{0,1}+D_{i}^{\text {SOC } 3 \text { digit }}+\varepsilon_{i}
$$

$\mathrm{HC}_{\mathrm{i}}=$ Education, Experience, On-the-job training;
GrE= 1 if $\mathrm{i}=$ Green Existing, and zero otherwise;
$\mathrm{Gr} \mathrm{N}=1$ if $\mathrm{i}=\mathrm{Green}$ New, and zero otherwise;
D full set of 3-digit SOC dummy variables;
Consoli, Marin, Marzucchi, Vona (15) "Do green jobs differ from nongreen jobs in terms of skills and human capital?" SPRU WP

Green jobs vs non-green jobs

	Log (years of educ)	Log (years of exp)	Log (years of train)
Green Existing	$0.0191^{* *}$	$0.357^{* * *}$	$0.341^{* * *}$
Green New	(0.00861)	(0.113)	(0.129)
	0.0205	-0.0515	0.168^{*}
F green occ dummies	2.609^{*}	$5.982^{* * *}$	$3.815^{* *}$
	N	465	465

OLS estimates weighted by employment share. Robust standard errors in parenthesis.

* $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$. SOC 3-digit dummies included.

Occupations in SOC 3-digit categories with no green occupation have been excluded.

Green jobs vs non-green jobs

	Log (years of educ)	Log (years of exp)	Log (years of train)
Green Existing	$\mathbf{0 . 0 1 9 1 ^ { * * }}$	$\mathbf{0 . 3 5 7 ^ { * * * }}$	$\mathbf{0 . 3 4 1 ^ { * * * }}$
Green New	$\mathbf{(0 . 0 0 8 6 1)}$	$\mathbf{(0 . 1 1 3)}$	$\mathbf{(0 . 1 2 9)}$
	0.0205	-0.0515	0.168^{*}
F green occ dummies	2.609^{*}	$5.982^{* * *}$	$3.815^{* *}$
	N	465	465

[^0]
Green jobs vs non-green jobs

	Log (years of educ)	Log (years of exp)	Log (years of train)
Green Existing	$0.0191^{* *}$	$0.357^{* * *}$	$0.341^{* * *}$
Green New	(0.00861)	(0.113)	(0.129)
	$\mathbf{0 . 0 2 0 5}$	$\mathbf{- 0 . 0 5 1 5}$	$\mathbf{0 . 1 6 8 ^ { * }}$
F green occ dummies	$\mathbf{(0 . 0 2 2 1)}$	$\mathbf{(0 . 1 2 4)}$	$\mathbf{(0 . 0 9 9 8)}$
N	465	$5.982^{* * *}$	$3.815^{* *}$

[^1]
Green jobs vs non-green jobs

	$\begin{aligned} & \text { Log } \\ & \text { (years of educ) } \end{aligned}$	$\begin{aligned} & \log \\ & \text { (years of exp) } \end{aligned}$	$\begin{aligned} & \log \\ & \text { (years of train) } \end{aligned}$
Green Existing	0.0137*	0.291***	0.301 **
	(0.00778)	(0.107)	(0.128)
Green New	0.0102 (0.0230)	$\begin{aligned} & -0.124 \\ & (0.133) \end{aligned}$	$\begin{gathered} 0.138 \\ (0.110) \end{gathered}$
$\log ($ R\&D non-env/L)	$0.0294^{* * *}$	0.00216	-0.124
	(0.0111)	(0.0984)	(0.118)
$\log ($ R\&D env/L)	-0.0118	$0.641^{* *}$	0.653**
	(0.0261)	(0.256)	(0.269)
$\log (\mathrm{ICT} / \mathrm{L})$	0.0241*	-0.108	-0.125
	(0.0139)	(0.0991)	(0.127)
log(investments)	-0.00131	0.227***	0.210**
	(0.00971)	(0.0796)	(0.0894)
F green occ dummies	1.557	$5.188^{* * *}$	2.869*
	465	465	465

Green job accounting 3.1: Greenness

Beyond the dichotomy green vs non-green ...
O*NET includes detailed information on jobspecific tasks for >900 occupations

Green job accounting 3.1: Greenness

Beyond the dichotomy green vs non-green ... O*NET includes detailed information on jobspecific tasks for >900 occupations
For each green occupation we calculate the share of green tasks ...

$$
\text { Greenness }_{i}=\frac{[\# \text { Green Specific_Tasks }]_{i}}{[\# \text { Specific_Tasks }]_{i}}
$$

Examples (1)

Wind Turbine Service Technicians (49-9081.00)

Description
Inspect, diagnose, adjust, or repair wind turbines. Perform
maintenance on wind turbine equipment including resolving
electrical, mechanical, and hydraulic malfunctions
Green specific tasks (5)
Diagnose problems involving wind turbine generators or control systems.
Climb wind turbine towers to inspect, maintain, or repair equipment.
Non-green specific tasks (0)
Greenness => 5/5 = 1

Examples (2)

Regulatory Affairs Specialists (13-1041.07)

Description

Coordinate and document internal regulatory processes (e.g. internal audits, inspections). Compile and prepare materials for submission to regulatory agencies.
Green specific tasks (6)
Obtain clearances for the use of recycled plastics
Monitor national or international legislation on ozonedepleting substances or global warming
Non-green specific tasks (25)
Coordinate, prepare, or review regulatory submissions for domestic or international projects.
Participate in internal or external audits.
Greenness => 6/31 $=0.1935$

Green Occupations by Greenness

	Greenness=1	Greenness błw 0.5 and 0.3	Greenness<0.3
Green Existing Occupations	Environmental Engineers, Environmental Sc Technicians, Hazard Material Removers		
Green New Occupations	Wind Energy Engineers, Fuel Cell Technicians, Recycling Coordinators		

Green Occupations by Greenness

	Greenness=1	Greenness błw 0.5 and 0.3	Greenness<0.3
Green Existing Occupations	Environmental Engineers, Environmental Sc Technicians, Hazard Material Removers	Aerospace Engineers, Atmospheric and Space Scientists, Automotive Technicians	
Green New Occupations	Wind Energy Engineers, Fuel Cell Technicians, Recycling Coordinators	Electrical Engin Technologists, Biochemical Engin, Supply Chain Managers	

Green Occupations by Greenness

	Greenness=1	Greenness błw 0.5 and 0.3	Greenness<0.3
Green Existing Occupations	Environmental Engineers, Environmental Sc Technicians, Hazard Material Removers	Aerospace Engineers, Atmospheric and Space Scientists, Automotive Technicians	Construction Workers, Maintenance \& Repair Workers, Marketing Managers
Green New Occupations	Wind Energy Engineers, Fuel Cell Technicians, Recycling Coordinators	Electrical Engin Technologists, Biochemical Engin, Supply Chain Managers	Traditional Eng Occ, Transportation Planners, Compliance Managers

Green job accounting 3.2: GGT

Greenness applies only to green occupations
>> Looking for a set of general tasks that are strongly related to green tasks across all occupations

Green job accounting 3.2: GGT

Greenness applies only to green occupations
>> Looking for a set of general tasks that are strongly related to green tasks across all occupations

$$
G G T_{j i}=\beta_{j} \text { Greenness }_{i}+D_{i}^{\text {SOC } 3 \text { digit }}+\varepsilon_{i}
$$

A General Task is "green-related" if $\beta>0.1$ and if statistically significant at 1%
The selected GGTs are grouped together with Principal Component Analysis

Green General Tasks: 4 constructs

Engineering \& Technical

2C3b Engineering and Technology
2C3c Design
2C3d Building and Construction
2C3e Mechanical
4A1b3 Estimating the Quantifiable Characteristics of Products, Events, or Information
4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment

Green General Tasks: 4 constructs

Engineering \& Technical

2C3b Engineering and Technology
2C3c Design
2C3d Building and Construction
2C3e Mechanical
4A1b3 Estimating the Quantifiable Characteristics of Products, Events, or Information
4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment
Science
2C4b Physics2C4c Chemistry2C4d Biology

Green General Tasks: 4 constructs

Engineering \& Technical

2C3b Engineering and Technology

$$
\begin{array}{cl}
\text { 2C3c } & \text { Design } \\
\text { 2C3d } & \text { Building and } \\
\text { 2C3e } & \text { Mechanical } \\
\text { 4A1b3 } & \text { Estimating th } \\
\text { 4A3b2 } & \text { Drafting, Layi } \\
& \\
\text { 2C4b } & \text { Physics } \\
\text { 2C4c } & \text { Chemistry } \\
\text { 2C4d } & \text { Biology }
\end{array}
$$

2C3d Building and Construction
4A1b3 Estimating the Quantifiable Characteristics of Products, Events, or Information
4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment

Science

Operation Management

2B4g Systems Analysis
2B4h Systems Evaluation
4A2b3 Updating and Using Relevant Knowledge
4A4a1 Interpreting the Meaning of Information for Others
4A4b6 Provide Consultation and Advice to Others

Green General Tasks: 4 constructs

Engineering \& Technical

2C3b Engineering and Technology

$$
\begin{array}{cl}
\text { 2C3c } & \text { Design } \\
\text { 2C3d } & \text { Building and } \\
\text { 2C3e } & \text { Mechanical } \\
\text { 4A1b3 } & \text { Estimating th } \\
\text { 4A3b2 } & \text { Drafting, Layi } \\
& \\
\text { 2C4b } & \text { Physics } \\
\text { 2C4c } & \text { Chemistry } \\
\text { 2C4d } & \text { Biology }
\end{array}
$$

2C3d Building and Construction
4A1b3 Estimating the Quantifiable Characteristics of Products, Events, or Information
4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment

Science

Operation Management

2B4g Systems Analysis
2B4h Systems Evaluation
4A2b3 Updating and Using Relevant Knowledge
4A4al Interpreting the Meaning of Information for Others
4A4b6 Provide Consultation and Advice to Others
Monitoring
4A1a2 Monitor Processes, Materials, or Surroundings
4A2a3 Evaluating Information to Determine Compliance with Standards

Green General Tasks: validation

Engineering \& Technical

Design, construction and assessment of technology (Ecorys, 2008)
Energy-saving R\&D projects, lower environm impact of production (UKCES, 2010)

Science

Early stages of the value chain, especially in utilities sectors (Cedefop, 2009) Highly transferable skills (Ecorys, 2008)

Operation Management

Managing through the entire product life cycle (Cedefop, 2009) Adaptive management: stir dialogue across stakeholders (UNEP, 2007)

Monitoring

Assessing compliance with technical and legal standards (UNEP, 2008) Assisting adaptation in changing regulatory environments (OECD, 2014)

Green General Skills: who and where?

GGS	Occupations	Industries
Engineering \& Technical	Architects Civil, Agr, Water, Manuf, Wind Industrial Designers Technologists, Drafters	Building construction Specialty Trade Civil Engin construction Mining
Science	Bio-chemical-medical Eng Bio-physicists -chemists Hydrologists, Water Specialists Health professions	Utilities Oil \& Gas Extraction Mining Petroleum \& Coal Produc
Operation Management	Industrial H\&S, Logistic Engrs Operation Research Analysts Actuaries, Social workers Psychologists, Sustain Officers	Oil \& Gas Extraction Computer, Electronic Manuf Utilities Petroleum \& Coal Product
Monitoring	Legal Professions Inspectors, Officers Supervisors, Compliance Man Regulatory Specialists	Utilities Oil \& Gas Extraction Building construction Mining

GGS across Occupations by Greenness

Green General Skills - descriptives

Green Skills by occupational groups

Summing up

Steps

Key feałures

Green products \& services False positives/negatives
O*NET Green vs Non-Green Binary set-up
Greenness
Continuous variable, GJ
Green General Tasks
4 constructs

Summing up

Green employment share about 10\% in US but growing fast

O*NET green jobs

- Green existing and new jobs: mostly high-skill Green Skills
- Resonate with grey literature
- Useful to identify skill gaps
- Strong technical orientation, "hands-on"
- No high-level dominated

PART 3

Effect of Environmental Regulation (ER) on the demand for Green Skills

Drivers of structural change

Labour market evolution based on skill content

- Technology (Autor ea, 2003; Goos \& Manning, 2007; Autor \& Dorn, 2013; Michaels ea, 2014)
- Trade (Lu and Ng, 2013; Autor ea, 2014)

Effect on ...	Technology	Trade
Skill displacement	Mostly Routine	All
Labour Market	Between industries	Unemployment
Education Intermediate	Low	
Timing	Slow	Fast
Geography	Widespread	Concentrated

Determinants of green employment

Environmental regulation: US Clean Air Act

County-specific standards on concentration of pollutants and hazardous substances
States host to "non-attainment counties" enforce compliance actions
Emission intensity of CAA pollutants at state-bysector (4-NAICS) level

1. Low emissions >> more stringent regulation (Brunel and Levinson, 2013; Carrion-Flores and Innes, 2011)
2. Emissions capture well within-sector changes affecting workforce composition (Levinson, 2015)

Previous work on ER and employment

Energy-intensive and polluting industries relocate in response to ER (Mulatu et al., 2010; Kahn \& Mansur, 2013)
Employment effects generally negative (Greenstone, 2002; Walker, 2011)
Costs (e.g. wage losses) large and persistent but small when compared to social returns (e.g. environment) (Walker, 2013)
Gap: No studies on how ER and environmental technologies affects demand for skills

Empirical strategy

We estimate the following (by state and industry):

$$
G G T_{i j}=\beta E R_{i j}+\sum_{i j} \eta X_{i j}+\mu_{j}+\phi_{i}+\varepsilon_{i j}
$$

(i: sectors, j: states)
ER proxied by emissions per employee by state and sector 4-digit (National Emission Inventory)
Controls (X): log average plant size, employment growth, log \# monitored facilities, 3-digit industry dummies, state dummies

Endogeneity issues

Reverse causality: industries or states with better (initial) endowment of skills more likely to reduce emission intensity
Measurement error: emission intensity just an indirect proxy of regulatory stringency (e.g. concentration of pollutants depends also on geographical features, pollution of neighbouring counties, etc)

Instrumental variable

Environmental enforcement activity (previous number of inspection and violations) as an instrument (Carrion-Flores \& Innes, 2010)

Why:

Likely to be strong in line with empirical literature showing that enforcement activities are a stimulus to abate emissions (Gray \& Deily, 1996; Magat \& Viscusi, 1990)
Likely to be uncorrelated with our skill measures other than through their effect on regulation

Baseline results

	Greenness	 Technical	Science
log(SO2/L)	$-0.00303^{* * *}$	$-0.00878^{* * *}$	$-0.0110^{* * *}$
	(0.000974)	(0.00193)	(0.00155)
Hansen test (p-value)	0.241	0.699	0.250
	Green specific tasks	Operaion Management	Monitoring
log(SO2/L)	$-0.211^{* * *}$	$-0.0134^{* * *}$	$-0.00466^{* * *}$
Hansen test (p-value)	(0.0461)	0.251	$0.00271)$

$\mathrm{N}=3328$ industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not shown: growth rate of employees 2002-2012; log average establishment size (employees per establishment) in 2012; log of the count of facilities reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee (2012); log of full inspection (2000-2009) per employee (2012).

IQR change for a 50% reduction of SO 2 emission per employee

	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
Log(ozone/L)	$\begin{gathered} \hline-0.00273 * * * \\ (0.000845) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00784 * * * \\ (0.00161) \end{gathered}$	$\begin{gathered} \hline-0.00988 * * * \\ (0.00127) \\ \hline \end{gathered}$	$\begin{gathered} -0.0120^{* * *} \\ (0.00227) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00417 * * * \\ (0.000996) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.189^{* * *} \\ (0.0383) \end{gathered}$
Hansen test (p-value)	0.262	0.640	0.296	0.722	0.910	0.285
	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
$\log (\mathrm{CO} / \mathrm{L})$	$\begin{gathered} \hline-0.00299 * * * \\ (0.000948) \\ \hline \end{gathered}$	$\begin{gathered} -0.00880^{* * *} \\ (0.00181) \\ \hline \end{gathered}$	$\begin{gathered} -0.0110^{* * *} \\ (0.00146) \\ \hline \end{gathered}$	$\begin{gathered} -0.0134^{* * *} \\ (0.00265) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00465 * * * \\ (0.00114) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.209 * * * \\ (0.0442) \\ \hline \end{gathered}$
Hansen test (p-value)	0.214	0.889	0.146	0.487	0.702	0.206
	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
Log(NOx/L)	$\begin{gathered} -0.00295 * * * \\ (0.000940) \\ \hline \end{gathered}$	$\begin{gathered} -0.00874 * * * \\ (0.00178) \\ \hline \end{gathered}$	$\begin{gathered} -0.0109^{* * *} \\ (0.00143) \\ \hline \end{gathered}$	$\begin{gathered} -0.0133 * * * \\ (0.00259) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00462 * * * \\ (0.00114) \end{gathered}$	$\begin{gathered} -0.207 * * * \\ (0.0433) \\ \hline \end{gathered}$
Hansen test (p-value)	0.198	0.948	0.115	0.438	0.659	0.177
	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
Log(PM2.5/L)	$\begin{gathered} \hline-0.00314 * * * \\ (0.000947) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00885 * * * \\ (0.00177) \end{gathered}$	$\begin{gathered} -0.0112 * * * \\ (0.00137) \end{gathered}$	$\begin{gathered} \hline-0.0136^{* * *} \\ (0.00243) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00472 * * * \\ (0.00107) \end{gathered}$	$\begin{gathered} \hline-0.216^{* * *} \\ (0.0435) \\ \hline \end{gathered}$
Hansen test (p-value)	0.325	0.464	0.517	0.969	0.916	0.409
	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
Log(lead/L)	$\begin{gathered} \hline-0.00378 * * * \\ (0.00121) \\ \hline \end{gathered}$	$\begin{gathered} -0.0110^{* * *} \\ (0.00237) \\ \hline \end{gathered}$	$\begin{gathered} -0.0137 * * * \\ (0.00190) \\ \hline \end{gathered}$	$\begin{gathered} -0.0167 * * * \\ (0.00357) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00581 * * * \\ (0.00147) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.263 * * * \\ (0.0582) \\ \hline \end{gathered}$
Hansen test (p-value)	0.245	0.722	0.225	0.601	0.817	0.261
	Greenness	Engineering \& Technical	Science	Operation Management	Monitoring	Green spec tasks
Log(TRI/L)	$\begin{gathered} \hline-0.00321 * * * \\ (0.00111) \\ \hline \end{gathered}$	$\begin{gathered} -0.00978 * * * \\ (0.00207) \\ \hline \end{gathered}$	$\begin{gathered} -0.0120^{* * *} \\ (0.00188) \\ \hline \end{gathered}$	$\begin{gathered} -0.0147 * * * \\ (0.00303) \\ \hline \end{gathered}$	$\begin{gathered} -0.00513 * * * \\ (0.00137) \\ \hline \end{gathered}$	$\begin{gathered} -0.227 * * * \\ (0.0543) \\ \hline \end{gathered}$
Hansen test (p-value)	0.141	0.755	0.0717	0.193	0.435	0.105

Selection effect in contracting sectors?

	Greenness		 Technical		Science	
	Contracting	Growing	Contracting	Growing	Contracting	Growing
$\log (S O 2 / L)$	$\begin{gathered} -0.00345 * * \\ (0.00137) \end{gathered}$	$\begin{aligned} & \hline-0.00205 \\ & (0.00197) \end{aligned}$	$\begin{gathered} \hline-0.0115^{* * *} \\ (0.00255) \end{gathered}$	$\begin{aligned} & \hline-0.00597^{*} \\ & (0.00358) \end{aligned}$	$\begin{gathered} -0.00783^{* * *} \\ (0.00185) \end{gathered}$	$\begin{gathered} \hline-0.00662^{* * *} \\ (0.00253) \\ \hline \end{gathered}$
Hansen test (p-value)	0.792	0.0263	0.978	0.370	0.745	0.226
	Operation Management		Monitoring		Log(Years of training)	
	Contracting	Growing	Contracting	Growing	Contracting	Growing
$\log (\mathrm{SO} 2 / \mathrm{L})$	$\begin{gathered} \hline-0.0159^{* * *} \\ (0.00346) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.00817^{* *} \\ (0.00368) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.00409+ \\ & (0.00251) \\ & \hline \end{aligned}$	$\begin{gathered} 0.00792^{* *} * \\ (0.00296) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.0645^{* * *} \\ (0.0174) \\ \hline \end{gathered}$	$\begin{gathered} -0.0751^{* * *} \\ (0.0259) \\ \hline \end{gathered}$
Hansen test (p-value)	0.469	0.497	0.448	0.0634	0.563	0.286

Contracting state-industy pairs: $\mathrm{N}=2381$; growing state-industry pairs: $\mathrm{N}=945$.
Standard errors clustered by state and 3-digit NAICS in parenthesis.
$\mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05$, $^{* * *} \mathrm{p}<0.01$.
Regressions weighted by employment in 2012 at the state and NAICS 4-digit level.

Conclusions, limitations, way ahead

Sustainable economic growth and employment Employment: vehicle through which know-how is embedded into the organization of production

Conclusions, limitations, way ahead

Sustainable economic growth and employment Employment: vehicle through which know-how is embedded into the organization of production
Data-driven method to identify green skills
Applicability: skill gaps, cross sectoral skill transfer

Conclusions, limitations, way ahead

Sustainable economic growth and employment Employment: vehicle through which know-how is embedded into the organization of production
Data-driven method to identify green skills
Applicability: skill gaps, cross sectoral skill transfer
GGS: strong analytical and technical content

- Operation Management and Monitoring: hands-on
- Science and Engineering: basic, formal education

Cross section >> limited grasp of dynamics

Conclusions, limitations, way ahead

Are educational systems prepared?
Established tradition in engineering disciplines that usually absorb skill mismatches (US)
System of vocational and on-the-job training lagging behind but necessary to match skill needs technical/non-routine manual jobs
Which occupations will be favoured by changes in the supply of skills?
What role for 'other' (no HEI) learning institutions?

Conclusions, limitations, way ahead

What role does geography play?

Evolution of green employment (proxy for specialization) across US MAs and NMAs
Is industry a good predictor of employment structure across geographical areas?
Are green activities more or less geographically concentrated than non-green ones?
What are the local drivers of green employment?

Thank you for your attention

Instituto de gestión de la innovación
y del conocimiento

Suggested readings

Autor, D., Levy, F. and Murnane, R. (2003) The skill content of recent technological change: An empirical exploration. Quarterly Journal of Economics 118 (4), pp.1279-1333.

Autor, D., Dorn, D., and Hanson, G. (2015) Untangling Trade and Technology: Evidence from Local Labor Markets. NBER Working Paper 21116

Beaudry, P., Green, D., and Sand, B. (2013) The Great Reversal in the Demand for Skill and Cognitive Tasks. NBER Working Paper 18901.

Becker, R., and Shadbegian, R. (2009) Environmental products manufacturing: A look Inside the Green Industry. The BE Journal of Economic Analysis and Policy, 9(1).

Carrión-Flores, C., and Innes, R. (2010) Environmental innovation and environmental performance. Journal of Environmental Economics and Management, 59(1), 27-42.

Consoli, D., Marin, G., Marzucchi, A., Vona, F. (2015) "Do green jobs differ from non-green jobs in terms of skills and human capital?" SPRU Working Papers 2015-16.
Cedefop (2009) Future Skill Needs for the green economy. Office of the European Union.
Deschenes, O, (2013), Green Jobs, IZA Policy Paper No. 62.
Goldin, C. and Katz, L. (1998) The origins of technology-skill complementarity. Quarterly Journal of Economics, 113(3), 693-732.
Greenstone, M. (2002) The Impacts of Environmental Regulations on Industrial Activity: Evidence from the 1970 and 1977 Clean Air Act Amendments and the Census of Manufactures. Journal of Political Economy, 110(6), 1175-1219.

Levinson, A. (2014) A Direct Estimate of the Technique Effect: Changes in the Pollution Intensity of US Manufacturing 1990-2008. NBER working paper 20399.

Morgenstern, R., Pizer, W. and Shih, J. (2002) Jobs versus the environment: an industry-level perspective. Journal of Environmental Economics and Management, 43(3), 412-436.
OECD/Cedefop (2014) Greener Skills and Jobs, OECD Green Growth Studies, OECD Publishing.
http://dx.doi.org/10.1787/9789264208704-en
Vona, F., Marin, G., Consoli, D., Popp, D. (2015) "Green Skills". NBER Working Paper 21116.
Walker, W. (2011) Environmental regulation and labor reallocation: Evidence from the Clean Air Act. American Economic Review, 101 (3), 442-447.

Data structure

Long-term changes skill demand

Long-term change occupations

Green employment: O*NET

SOC 2-digit	Toł Green occupations	Green Demand	Green Enhanced	Green Emerging
11 - Management	46	31	6	9
23-Legal	6	5	1	0
15 - Computer and Mathematical	27	25	0	2
17 - Architecture and Engineering	61	29	13	19
29 - Healthcare Practitioners and Technical	83	82	1	0
13 - Business and Financial Operations	45	35	4	6
19 - Life, Physical, and Social Science	58	41	10	7
27 - Arts, Design, Entertainment, Sports, and Media	43	41	2	0
25 - Education, Training, and Library	58	58	0	0
47 - Construction and Extraction	59	48	9	2
21 - Community and Social Service	14	14	0	0
49 - Installation, Maintenance, and Repair	54	48	4	2
33 - Protective Service	25	25	0	0
41 - Sales and Related	22	20	1	1
51 - Production	107	99	6	2
43 - Office and Administrative Support	58	57	1	0
53 - Transportation and Material Moving	50	47	3	0
31 -Healthcare Support	17	17	0	0
37 - Building Cleaning and Maintenance	8	8	0	0
39 - Personal Care and Service	32	32	0	0
45 - Farming, Fishing, and Forestry	16	16	0	0
35 - Food Preparation and Serving Related	16	16	0	0
Total	905	794	61	50

Non-Green General Skills

2A1b	Active Listening	2C2a	Production and Processing
2A1d	Speaking	2C3a	Computers and Electronics
2A1f	Science	2C4e	Psychology
2A2b	Active Learning	2C5a	Medicine and Dentistry
2A2d	Monitoring	2C6	Education and Training
2B1b	Coordination	2C7b	Foreign Language
2B1d	Negotiation	2C7e	Philosophy and Theology
2B1f	Service Orientation	2C9a	Telecommunications
2B3a	Operations Analysis	4A1b1	Identifying Objects, Actions, and Events
2B3c	Equipment Selection	4A2b1	Making Decisions and Solving Problems
2B3e	Programming	4A2b6	Organizing, Planning, and Prioritizing Work
2B3j	Equipment Maintenance	4A3a3	Controlling Machines and Processes
2B3I	Repairing	4A3b5	Repairing and Maintaining Electronic Equipment
2B4e	Judgment and Decision Making	4A4a4	Establishing and Maintaining Interpersonal Relationships
2B5b	Management of Financial Resourc4A4a7	Resolving Conflicts and Negotiating with Others	
2B5d	Management of Personnel ResourAA4b3	Training and Teaching Others	
2C1b	Clerical	4AAb5	Coaching and Developing Others
2C1e	Customer and Personal Service	4AA4c2	Staffing Organizational Units

Green jobs vs non-green jobs

O*NET Green initiative: focus on occupations
Green jobs vs non-green jobs
"Do green jobs differ from non-green jobs in terms of skills and human capital?"
Existing occ: education, experience, training
New occ: on the job training
‘Green jobs’ educational policy not sufficient

- Interindustry networks, consortia (Nelson, 1994)
- Skills-gap identification

[^0]: OLS estimates weighted by employment share. Robust standard errors in parenthesis.
 ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, $^{* * *} \mathrm{p}<0.01$. SOC 3-digit dummies included.
 Occupations in SOC 3-digit categories with no green occupation have been excluded.

[^1]: OLS estimates weighted by employment share. Robust standard errors in parenthesis.
 ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, $^{* * *} \mathrm{p}<0.01$. SOC 3-digit dummies included.
 Occupations in SOC 3-digit categories with no green occupation have been excluded.

